Q-band tunable negative refractive index metamaterial using Sc-doped BaM hexaferrite
نویسندگان
چکیده
A simple structured tunable negative refractive index (n) metamaterial (TNIM) has been designed, fabricated and tested in a Q-band rectangular waveguide. The structure consists of one slab of single crystalline scandium-doped barium hexaferrite (Sc-BaM), aligned parallel to two rows of periodic copper wires. The magnetic field tunable passband is measured indicating the occurrence of negative n. The centre frequency of the 5 GHz wide passband, having a transmission peak of −13 dB, is shifted linearly from 40.9 to 43.9 GHz by varying the bias field (H) from 4.0 to 7.0 kOe. The impact of ferrite volume factor (FVF) of the Sc-BaM slab upon the performance of the TNIM composite has been studied qualitatively. A tradeoff effect is illustrated in which the desirable negative permeability (μ) of the ferrite is offset by the detrimental impact of its dielectric property in suppressing the negative permittivity (ε) of the nearby plasmonic wires. (Some figures in this article are in colour only in the electronic version)
منابع مشابه
Transistor-based metamaterials with dynamically tunable nonlinear susceptibility
Articles you may be interested in A frequency and bandwidth tunable metamaterial absorber in x-band Ferrite based metamaterials with thermo-tunable negative refractive index Appl.
متن کاملA New Circular Polarization Metamaterial Ferrite Phase Shifter
In this paper, a new X band Metamaterial (MTM) based ferrite phase shifter is presented. The phase shifter is excited by circular polarized wave base on combination of TE10 and TE01 modes in a square waveguide. In order to synthesize negative refractive index metamaterial (NIM), negative permeability of ferrite slabs in extraordinary mode is mixed with the negative permitivity of printed period...
متن کاملTunable negative index metamaterial using yttrium iron garnet
A magnetic field tunable, broadband, low-loss, negative refractive index metamaterial is fabricated using yttrium iron garnet (YIG) and a periodic array of copper wires. The tunability is demonstrated from 18 to 23GHz under an applied magnetic field with a figure of merit of 4.2GHz/kOe. The tuning bandwidth is measured to be 5GHz compared to 0.9GHz for fixed field. We measure a minimum insertio...
متن کاملDual-band, Dynamically Tunable Plasmonic Metamaterial Absorbers Based on Graphene for Terahertz Frequencies
In this paper, a compact plasmonic metamaterial absorber for terahertz frequencies is proposed and simulated. The absorber is based on metamaterial graphene structures, and benefits from dynamically controllable properties of graphene. Through patterning graphene layers, plasmonic resonances are tailored to provide a dual band as well as an improved bandwidth absorption. Unit cell of the design...
متن کاملOvercoming losses with gain in a negative refractive index metamaterial.
On the basis of a full-vectorial three-dimensional Maxwell-Bloch approach we investigate the possibility of using gain to overcome losses in a negative refractive index fishnet metamaterial. We show that appropriate placing of optically pumped laser dyes (gain) into the metamaterial structure results in a frequency band where the nonbianisotropic metamaterial becomes amplifying. In that region ...
متن کامل